Continuous digitization in Khalimsky spaces

نویسنده

  • Erik Melin
چکیده

A real-valued function defined on R can sometimes be approximated by a Khalimsky-continuous mapping defined on Z. We elucidate when this can be done and give a construction for the approximation. This approximation can be used to define digital Khalimsky hyperplanes that are topological embeddings of Z into Z. In particular, we consider Khalimsky planes in Z and show that the intersection of two non-parallel Khalimsky planes contains a Khalimsky line.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital Geometry and Khalimsky Spaces

Melin, E. 2008. Digital Geometry and Khalimsky Spaces (Digital geometri och Khalimskyrum). Uppsala Dissertations in Mathematics 54. vii+47 pp. Uppsala. ISBN 978-91-506-1983-6 Digital geometry is the geometry of digital images. Compared to Euclid’s geometry, which has been studied for more than two thousand years, this field is very young. Efim Khalimsky’s topology on the integers, invented in t...

متن کامل

Digitization in Khalimsky spaces

We consider the digital plane of integer points equipped with the Khalimsky topology. We suggest a digitization of straight lines such that the digitized image is homeomorphic to the Khalimsky line and a digitized line segment is a Khalimsky arc. It is demonstrated that a Khalimsky arc is the digitization of a straight line segment if and only if it satisfies a generalized version of the chord ...

متن کامل

Connectedness and continuity in digital spaces with the Khalimsky topology

2 Digital spaces 3 2.1 Topology in digital spaces . . . . . . . . . . . . . . . . . . . . 3 2.2 Spaces with a smallest basis . . . . . . . . . . . . . . . . . . . 4 2.3 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 General topological properties . . . . . . . . . . . . . . . . . . 5 2.5 Topologies on the Digital Line . . . . . . . . . . . . . . . . . . 7 2.6 The Khalim...

متن کامل

How to Find a Khalimsky-Continuous Approximation of a Real-Valued Function

Given a real-valued continuous function defined on n-dimensional Euclidean space, we construct a Khalimsky-continuous integer-valued approximation. From a geometrical point of view, this digitization takes a hypersurface that is the graph of a function and produces a digital hypersurface—the graph of the digitized function.

متن کامل

Extension of continuous functions in digital spaces with the Khalimsky topology

The digital space Z equipped with Efim Khalimsky’s topology is a connected space. We study continuous functions Z ⊃ A→ Z, from a subset of Khalimsky n-space to the Khalimsky line. We give necessary and sufficient condition for such a function to be extendable to a continuous function Z → Z. We classify the subsets A of the digital plane such that every continuous function A → Z can be extended ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2008